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Non-pQCD Contributions
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« Boson + jets: important background to many measurements and searches
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Motivation:

» Need to be able to simulate “ordinary”
QCD and “Standard Model” events at the
collider.

» Finding “new” physics requires a good
understanding of the “old” Physics (Not
only to have a good model of the hard
scattering part of the process but also of
“underlying event”).
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Collider Detector at Fermilab (CDF)

Electromagnetic Calorimeter

Muon detectors

Silicon tracker
(700,000 channels)
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The Underlying Event (UE) g

Hard Scattering

Outgoing Parton
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= Outgoing Parton Initial-State Radiation
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Underlying Event

P

Everything except the two outgoing hard scattered components.
Beam-beam remnants (BBR), multiple parton interactions (MPI) ...
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From an experimental point of view, on an event by event basis,

it is impossible to separate these two components.
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So what is the problem with the
Underlying Event ?

> The process of interest at hadron colliders are
mostly the hard scattering events.

> These hard scattering events are contaminated by
the underlying event.

> The underlying event is an unavoidable
background to most collider observables.

> Increasing luminosity implies more hadronic
collisions — which also complicates things. (pile-up)

> The underlying event is not well understood since
non-perturbative physics is involved.

TECHNISCHE
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Measuring it is important in ...

» Precision measurements of hard interactions
where soft effects need to be subtracted.

> Jet cross-section, missing energy, isolation cuts,
top mass ...

> QCD Monte-Carlo tuning.

Higher the precision, higher the accuracy
of physics measurements.
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PYTHIA

For underlying event studies,
the only tool we have is to
compare the data and the

. Apollo's priestess,

predictions from various Pythia, performing

Monte Carlo event the duty of the
oracle

generators, i.e. PYTHIA.

PYTHIA has "knobs” which can be tuned to obtain
an optimal description of the data.
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PYTHIA Parameters

PYTHIA UE Parameter Definition

MSTP(81) MPI on/off

MSTP(82) 3 / 4: resp. single or double gaussian hadronic matter
distribution in the p / pbar

PARP(67) ISR Max Scale Factor

PARP(82) MPI pT cut-off

PARP(83) Warm-Core: parp(83)% of matter in radius parp(84)

PARP(84) Warm-Core: 7

PARP(85) prob. that an additional interaction in the MPI formalism

gives two gluons, with colour connections to NN in
momentum space

PARP(86) prob. that an additional interaction in the MPI formalism
gives two gluons, either as described in PARP(85) or as a
closed gluon loop. Remaining fraction is supposed to
consist of qgbar pairs.

PARP(89) ref. energy scale

PARP(90) energy rescaling term for PARP(81-82)~E,*PARP(90)
gy g CM

S. Muanza - Moriond QCD 2002 Talk | 11 QE‘E\',;%‘%%"T'E




PYTHIA Parameters

PYTHIA UE Parameter Definition

MPI on/off

STP(82) 3 / 4: resp. single or double gaussian hadronic¥Watter
distribution in the p / pbar

ISR Max Scale Factor

MPI pT cut-off

»PYTHIA uses MPI to enhance the UE.

»Multiple parton interaction more likely in a hard
(central) collision.

»ISR Max Scale Factor affects the amount of initial-
state radiation.

»Increasing the cut-off decreases the multiple
parton interaction.
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CDF Run 1 Tune (PYTHIA 6.2 CTEQS5L)

UE Parameters

ISR Parameter:

Intrinsic KT

Deepak Kar

Z-Boson Transverse Momentum

Parameter Tune A Tune AW
MSTP(81) 1 1
MSTP(82) 4 4
PARP(82) 2.0 GeV 2.0 GeV
PARP(83) 0.5 0.5
PARP(84) 0.4 0.4
PARP(85) 0.9 0.9
PARP(86) 0.95 0.95
PARP(89) 1.8 TeV 1.8 TeV
PARP(90) 0.25 0.25
PARP(62) ( 1.0 1.25 ;
PARP(64) \1.0 03/
PARP(67) 4.0 4.0

MSTP(91)
PARP(91)

PARP(93)

7 N O CDF Run 1 Data
= 1 = = PYTHIA Tune A CDF Run 1
3 o PYTHIA Tune AW published
; 008 — I
i ! 1.8 TeV
'% G Normalized to 1
;?: 0.04 —
2
T
0.00 -# } f i f f f f T T 1
0 2 4 6 8 10 12 14 16 18 20
Z-Boson PT (GeV/c)
Both tunes reveal a
remarkably good agreement
of the data and PYTHIA.
»



Drell-Yan Process

> Charged particles with: p; > 0.5 GeV/c and

In| <1
> Using events with the lepton pair invariant

mass in the Z region: 70 < M(1l) < 110 GeV/c?

TECHNISCHE
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Dividing up the Central Region

Jet#1 or Z-boson
Diregtion

We define -

> |Ad| < 60° as Toward

P R Y » 60° < |Ad| < 120° as Transverse

> |A¢| > 120° as Away

Azimuthal angle A¢ relative

to the leading calorimeter jet
(or the Z-boson)
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Z-Boson Production at Tevatron

Single Z Bosons are produced Z-Boson
. . . Direction

with large p; via the ordinary

QCD sub processes:

49 — 74,47 — 2,79 — 77
They generate additional gluons ! "%
via bremsstrahlung — resulting
in multi-parton final states
fragmenting into hadrons
and forming away-side jets.

ransverse”

“Away-Side” Jet

CDF (pb) NNLO (pb)
o(Z—I*l) | 254.9+3.3(stat)+4.6(sys)+15.2(lum) 252.3+5.0

CDF: Phys. Rev. Lett. 94, 091803 (2005)
NNLO Theory: Stirling, Van Neerven
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Our Analysis

> The goal of the analysis was to produce data
on the underlying event that is corrected to
the particle level so that it can be used to tune
the QCD Monte-Carlo models without
requiring CDF detector simulation (i.e.
CDFSIM).

> Also by looking at the measurements sensitive
to the underlying event, we would be able to
better constrain our underlying event models.

TECHNISCHE
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Charged Particle Multiplicity
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Average Charged Density

|Charged Particle Density: dN/dndé
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Charged Transverse

| Transverse Region Charged p, Sum Density: dp,/dndj |

Momentum Sum
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“"Newer” Tunes
(From H. Hoeth, MPI@LHC 2008)

MC/data
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Data/MC comparisons show the features and
problems of different generators and tunings.
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Mean p, vs Charged Multiplicity

<pr> versus N, is a measure of the
amount of hard versus soft
processes contributing and it is
sensitive to the modeling of the
multiple-parton interactions.

TECHNISCHE
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Mean p, vs Charged Multiplicity
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Mean p, vs Charged Multiplicity
PT(Z-Boson) versus Nchg
80 r
TCDF Run 2 Preliminary
1 data corrected Fm——- /
o generator level theory : HW : 77777777777777777777777777 -/
Se0 T .
o "Drell-Yan Production" RSN *
J 70 < M(pair) <110 GeV
=40+ A e
o -
Py L
g
o
2 ********************** P
Charged Particles (|n|<1.0, PT>0.5 GeV/c)
excluding the lepton-pair
0 - \ \ \ 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Number of Charged Particles
Large N, implies high p; jets (i.e. hard 2—2 scattering).

Without MPI the only way to get large N, is to have a very
hard 2—2 scattering.

Deepak Kar
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Mean p, vs Charged Multiplicity [ P.(Z) < 10 GeV/c ]

Average Charged PT versus Nchg

14
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0.6 } | | | | |
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Number of Charged Particles

Multiple-parton interactions provides another mechanism for
producing large multiplicities that are harder than the beam-beam
remnants, but not as hard as the primary Z +jet hard scattering.

TECHNISCHE
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Moving Forward to LHC

> The UE measurement plan at the LHC benefits from the solid
experience of the CDF studies.

> Predictions on the amount of activity in transverse region at
the LHC are based on extrapolations from lower energy data
(mostly from the Tevatron).

> All the UE models have to be tested and adjusted at the LHC,
in particular we know very little about the energy dependents
of MPI in going from the Tevatron to the LHC.

TECHNISCHE
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Moving Forward to LHC

> The UE measurement plan at the LHC benefits from the solid
experience of the CDF studies.

> Predictions on the amount of activity in transverse region at
the LHC are based on extrapolations from lower energy data
(mostly from the Tevatron).

> All the UE models have to be tested and adjusted at the LHC,
in particular we know very little about the energy dependents
of MPI in going from the Tevatron to the LHC.

Few hundred pb! integrated luminosity in first year — enough
Z’s to look at the UE with Drell-Yan / Z+jets ...

TECHNISCHE
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Moving Forward to LHC

"Toward"” Charged Particle Denslty: dN/dndd
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Underlying Event much more active at LHC
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Conclusions

» Observed excellent agreement with PYTHIA
tune AW predictions.

> Close match with leading jet underlying
event results —underlying event models (BBR
part) independent of hard scattering event?

> By looking at the correlation between <p,>
and charged multiplicity, we can

discriminate between different contributing
subprocesses.
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Backup Material
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Proton-AntiProton Collisions
at the Tevatron

Elastic Scattering Single Diffraction Double Diffraction

“\
Ctt — OFEL T OspTOpptOHC

The “hard core” component Hard Core /

contains both “hard” and

“soft” collisions. /

“Soft” Hard Core (no hard scattering) / \

A
Proton AntiProton Tt # Initial-State
Radiation
:_ ‘inal-State
H adiation

12
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Minimum Bias Event

> Events collected with a trigger that is not very
restrictive — ideally with totally inclusive trigger.

> In principle contains all types of interactions
proportionally to their natural production rate.

At the Tevatron about 1% of min-bias events contain a
jet with 10 GeV transverse energy. At the LHC we
expect this fraction increase by more than a factor of
10.

TECHNISCHE
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The Underlying Event in a Hard-Scattering
Process is not the same as Min-Bias Events

> The underlying event produces tracks in the
detector and energy in the calorimeter, thus
affecting the measurement of the hard scattering
component.

> Presence of initial and final state radiation.

> Color interactions between the hard scattering and
the underlying event might occur.

TECHNISCHE

Deepak Kar ggllEVSEDFE.-'ﬂTKT



Tuning PYTHIA

> Need to produce tunes, not of one parameter at a time, but
simultaneously for a group of them.

> Given the many PYTHIA parameters to be tuned, it is
convenient to divide the task into subtasks.

1. If we assume jet universality, hadronization and final-
state parton showers should be tuned to e +e”*- annihilation
data, notably from LEP1, since this offers the cleanest
environment.

2. With such parameters fixed, hadron collider data should
be studied to pin down multiple interactions and other
further aspects, such as initial-state radiation.

TECHNISCHE
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Bringing PYTHIA in Good Agreement with
the Data ...

> The initial state radiation had to be adjusted.

> The dependence of the probability of multi-parton
(secondary) interactions on the impact parameter had to be
smoothed out.

> Probability of di-gluon production in multi-parton secondary
interactions had to be substantially enhanced over di-quark
production.

> The probability of color connections of products of
secondary interactions with p p-remnants had to be
increased.

Soft QCD phenomena in events with high-ET jets at Tevatron - Andrey Korytov,
Eur Phys J C 33, s01, s425-s426 (2004)
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CDF Run 2 Tune (PYTHIA 6.206 CTEQ5L)

—
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PARP(67)
MSTP(91)
PARP(91)

PARP(93)

Parameter Tune A Tune DW | Tune DWT
MSTP(81) 1 1 1 ‘"Transverse" Charged Average PT|
1.7 |
UE Parameters MSTP(SZ) 4 4 4 CDF Run 2 Pre"_minary "Leading Jet" j
1 9409 g 15 data corrected to particle level 1 { ]: :|: _
PARP(82) { 2.0GeV | 1.9GeV ; ] Pt
GeV pAg3 L SN\gJerll e T il N N N
PARP(83) 0.5 0.5 0.5 - t
PARP(84) 0.4 0.4 0.4 g MidPoint R = 0.7 |n(jet#1) < 2
= 0.9 -
PARP(SS) 09 10 10 : Charged Particles (|n|<1.0, PT>0.5 GeV/c)
0.7 } } } } } } } }
PARP(86) 0.95 1.0 1.0 0 50 100 150 200 250 300 350 400 450
PT(jet#1) (GeVic)
PARP(89) 1.8 TeV 1.8 TeV 1.96 TeV
iy L PARP(90) 0.25 0.25 0.16
PARP(62) 1.0 1.25 1.25
PARP(64) 1.0 02 02 PYTHIA Tune DW is very similar to

Tune A except that it fits the CDF
P;(Z) distribution and it uses the
D@ prefered value of PARP(67) =
2.5.
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Produced Observed

E“‘\.\ particle ( ~~a
Steps Are: [~ S
° st e O\ N ™
:ﬂ /ﬂ N~ h ) -
/// '
s
»~ \
‘/ af Hadrons Detector

~.

y Hadrons

y Fragmentation
‘Scattered Parton

l:‘ragmemati-:m

" $cattered Parton

1. Calculate the observables by Monte Carlo event
generator in particle level and in (by running
through CDFSIM) detector level.

2. Correct the observables back to particle level in
real data by calculating the correction factor from
Monte Carlo.

8. Compare with different Monte Carlo event
generators (PYTHIA, HERWIG...).
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Negligible Background at “Z”

CDF Run Il Preliminary
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